

Data Engineering Certificate Program

COURSE INFO & SYLLABUS

CAREER FACTS

WHAT DO DATA ENGINEERS DO?

Data Engineers play an essential role in organizations that collect and manage big data.

In a typical data organization, data engineers gather and collect the data, store it, do batch processing or real-time processing on it, and serve it via the database to a data scientist who can easily query it. In essence, data engineers help manage how data flows in an enterprise's data architecture.

JOB MARKET

The market has seen a surge in demand for data scientists in the past several years and we see almost all universities and colleges offer some kind of data science courses and programs.

However, data engineers are usually harder to train and source because the program needs to be very practical/hands-on and there is not much theory to teach.

JOB TITTLE

ETL/ELT Engineer

ETL Developer Data Integration Engineer SQL Developer Big Data Engineer

Data-Savvy Software Engineer

Computer Science/Engineering Mechanical Engineering Electrical Engineering Data Platform Engineer

BI/Data Warehouse

Data Architect BI Engineer Big Data Developer Data Warehouse Engineer BI Specialist

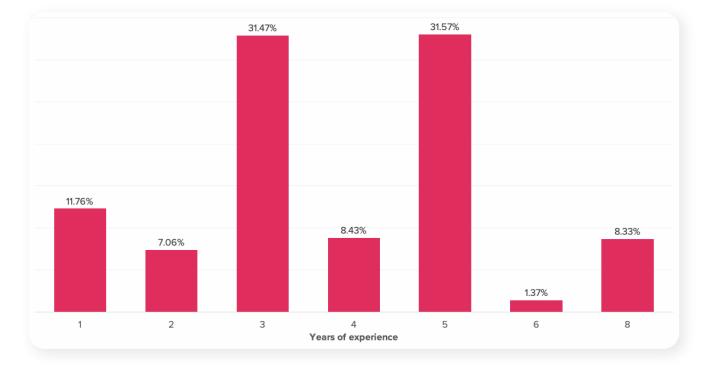
ML Data Engineer

Data Engineer Big Data Engineer Al/ML Engineer Model Automation Engineer

DEMAND FOR DATA ENGINEERING

DATA ENGINEER SALARIES IN CANADA

Average in Canada


\$83,662 per year

TECHNICAL SKILLS

REQUIRED YEARS OF EXPERIENCE

ABOUT THE PROGRAM

OVERVIEW

WeCloudData's Data Engineering certificate program focuses on helping students to acquire the essential data engineering skills, gain professional experience and prepare for data engineer careers.

WeCloudData is a Toronto-based data skill training academy. We've partnered with many Canadian corporations on upskilling their employees. No. 1 best data science bootcamp in 2020-2021 by SwitchUp.

WHO IS IT FOR?

This weekend program is suitable for students who want to become a Machine Learning Engineer or Al Engineer

Students accepted into the program should have acquired fundamental knowledge and skills of Python programming and machine learning already

Recent Grads

from CS and Engineering who want to gain advantage in the job market by gaining practical ML engineering skills

Data Scientists

who want to build more advanced skills in MLOps and model deployment

Entrepreneurs

who want to build ML systems and platforms for her/his next startup

Career Switchers

who have a full-time job and would like to switch career

PROGRAM DETAILS

24 WEEKS Wednesday evening & Saturday full day

10+ GUEST SPEAKERS

to make connection with

END-TO-END PROJECTS to build your portfolio

TA OFFICE HOUR Mon-Thu 6PM-8PM

4 : 1 RATIO students vs instructors

1 BUSINESS PROJECT

from a real client (full-time students only)

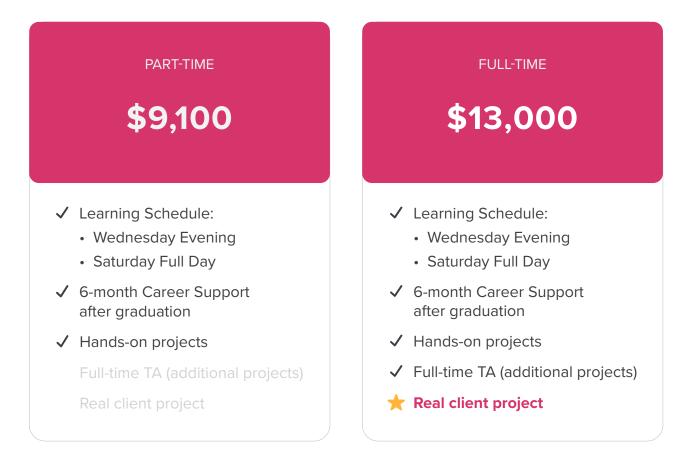
LEARNING OUTCOMES

- Solid understanding of major big data and cloud platforms such as Hadoop, Spark, Databricks, AWS, and GCP
- Able to build and deploy data pipelines on cloud platforms using workflow orchestration tools such as Apache Airflow and DBT
- Comfortable with building real-time and batch data ingestion
- Deep understanding of the pros and cons of different database systems
- Hands-on experience with data warehouse modeling and ETL
- Hands-on experience with DataOps tools such as Git, Docker, Kubernetes
- Familiar with all things data engineering for data scientists: maintaining pipelines, building feature stores, scheduling model training, monitoring, and deployment
- Solid understanding of data governance and managing data engineering projects

PREREQUISITES

- Know the basics of Python and SQL (We will also provide online Python and SQL courses for you)
- An operating system with at least 8G of RAM (16G is preferred), 4 cores of CPU

GUEST SPEAKERS



TOP-NOTCH CURRICULUM

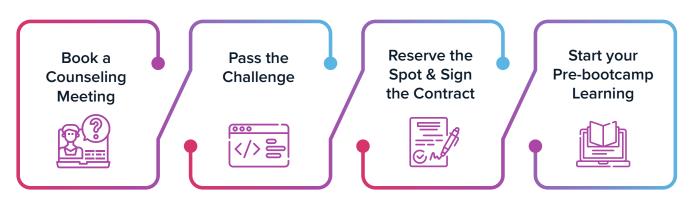
The only academy that provides the most comprehensive data engineering curriculum

Topics	Content	Topics	Content
Programming	Linux SQL Python/Scala	Data Pipelines	Apache Airflow CI/CD Basics
Cloud Computing	Amazon Web Service Google Cloud Platform	Docker Kubernetes	Containerization Container Orchestration
Big Data	Hadoop, MapReduce, Hive Apache Spark NoSQL Database Presto/Druid	Data Governance	Data Quality Data Cataloguing Metadata Management Data Privacy
Data Warehouse	Snowflake, Redshift, BigQuery Data Modelling Database Sharding, Replication	Al for Data Engineers	Machine Learning Processes Building Feature Stores Model Deployment
ETL/ETL	Data Ingestion Data Integration Streaming Data Processing	Data Project Management	Project Management Time Management Communications

FLEXIBLE SCHEDULE

CUSTOMIZED LEARNING PLATFORM

Self-paced learning guided and powered by our unique learning management system


where you can watch lectures, work on your codes, test your progress with live quizzes, track your learning journey, and communicate with instructors and TA's.

	WEEK 1 Programming Basics	week 2 Apache Spark I
CURRICULUM Semester 1 12 weeks	 Linux Commands Bash Text editing CRON jobs Python Programming (Review) Modules and Packages OOP/Class Key Data Structures (Queues, Stack, Trees, Heaps, etc.) 	 Scala Programming Introduction to Apache Spark (Scala) Distributed Systems 101 RDD Programming Spark DataFrame/SQL
CU	WEEK 3 AWS I	WEEK 4 AWS II
	 Cloud Computing 101 Introduction to AWS EC2/S3/Lambda Introduction to RDS MySQL, Postgre 	 Introduction to Streaming with Kinesis Introduction to Serverless with Lambda Data Ingestion using Kinesis Firehose, Lambda, and S3
	WEEK 5 Docker	week 6 Kubernetes
	 Virtualization Docker Containers Docker Compose Deploying Flask applications using Docker and AWS ECR/EKS 	 Kubernetes Introduction with MiniKF Working with Kubernetes on Google Cloud (GCP) Deploying Kubeflow Services on GCP Deploying Elasticsearch on Kubernetes
	WEEK 7 RDBMS	week 8 Data Warehouse
	 Relational Database Core Concepts: ACID, Normalization Replications, Sharding, Monitoring Google Big Query Amazon Redshift 	 Snowflake Database Data Modeling Deep Dive Query Performance Tuning Data Warehouse Design Patterns
	week 9 Data Lake: Hadoop	week 10 Data Lake: Presto/Spark
	 Introduction to Big Data Distributed File Systems and Cloud Storage AWS S3, Google Cloud Storage Data Warehouse with Apache Hive 	 SQL on Data Lake with Presto and Dremio Delta Lake with Spark on Databricks/AWS
	WEEK 11 Data Lake: OLAP	WEEK 12 Term 1 Project
	 Data Warehouse/Lake Best Practices BI/OLAP on Lake with Apache Kylin and Druid 	 Modern BI on Lake/Warehouse Project Build OLAP Cubes and Dashboard Data Warehouse to Cloud Migration

	week 13 NoSQL Database I	WEEK 14 NoSQL Database II
CURRICULUM Semester 2 12 weeks	 Introduction to NoSQL Databases (CAP) Column-family NoSQL Cassandra HBase Google BigTable 	 Data Modeling for NoSQL DynamoDB/Cassandra Full-Text Search Database Elasticsearch
URR	WEEK 15 Data Ingestion I	WEEK 16 Data Ingestion I
0 0	 Introduction to Real-time Data Ingestion Message Brokers (pub/sub) Goolge Pub/Sub Apache Kafka 	 The Lambda and Kappa Architecture Stream Processing with Spark Streaming Stream Processing with Flink/Beam Data Lineage with Kafka, NiFi, and Atla
	WEEK 17 Data Integration	WEEK 18 Data Pipelines
	 Introduction to Data Integration Data Integration: ETL vs ELT Data Integration with Spark and Talend Delta Lake 	 Building Data Pipelines with Apache Airflow Deploying Airflow in Production with AWS ECS
	week 19 Data Governance	WEEK 20 Machine Learning for Data Engineers
	 Data Quality and Metadata Management Data Quality: Data Profiling Data Quality: Validation, Standardization, Matching, and Enrichment Metadata Management: Cataloging and Discovery 	 Machine Learning Lifecycle Overview Building Feature Database/Stores for ML Deployment ML Pipelines using Apache Airflow, PySpark, and GCP
	WEEK 21 Project Management	WEEK 22/23/24 Capstone Project
	 Project Management 101 Time Management Data Governance: The People, Policies, and Processes Managing Data Migration Projects Managing Data Lake Projects 	• Capstone Project

ADMISSION PROCESS

Our program advisor will have a 1-on-1 meeting with you to see if the program is a good fit for you. There is no application fee. It takes about 30 minutes There will be a technical test and an interview. Applicants spend up to 2 hours on the challenge. Our admission officer will work with you directly to help you fill out a contract, pay \$500 deposit and assist you to apply any kind of grant and finance options.

Starting ahead will gain you more experience and competence. Research shows that preview and preparation account for 73.7% success in academic achievement of university students.

TUITION, GRANTS AND FINANCE OPTIONS

\$9,100 PART-TIME

\$13,000

As an Ontario registered private career college, you can apply for student line of credit from BMO with lower interest rate.

Please check our website for early bird discounts

DO YOU KNOW?

With Ontario Second Career grant you may be eligible for up to \$28,000 for costs including: tuition, books, manuals, transportation, basic living allowance, child care.

Contact our program advisor, Amir, for more information amir.asadian@weclouddata.com