

Data Engineering Certificate Program

COURSE INFO & SYLLABUS

CAREER FACTS

WHAT DO DATA ENGINEERS DO?

Data Engineers play an essential role in organizations that collect and manage big data.

In a typical data organization, data engineers gather and collect the data, store it, do batch processing or real-time processing on it, and serve it via the database to a data scientist who can easily query it. In essence, data engineers help manage how data flows in an enterprise's data architecture.

JOB MARKET

The market has seen a surge in demand for data scientists in the past several years and we see almost all universities and colleges offer some kind of data science courses and programs.

However, data engineers are usually harder to train and source because the program needs to be very practical/hands-on and there is not much theory to teach.

JOB TITTLE

ETL/ELT Engineer

ETL Developer Data Integration Engineer SQL Developer Big Data Engineer

Data-Savvy Software Engineer

Computer Science/Engineering Mechanical Engineering Electrical Engineering Data Platform Engineer

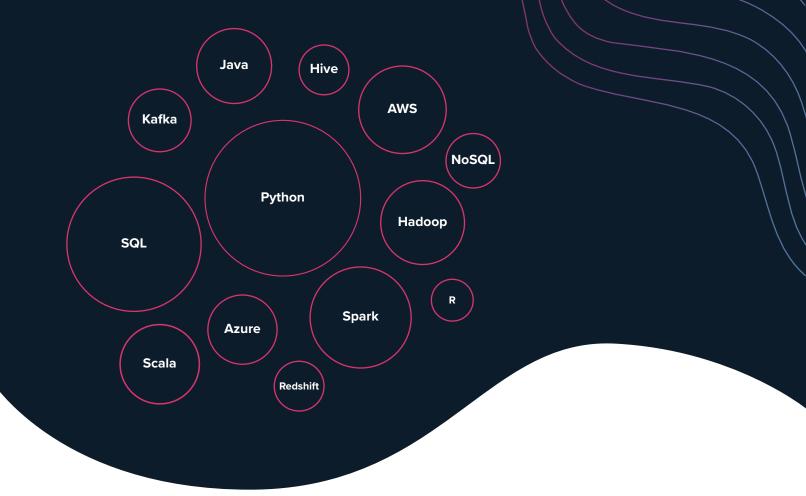
BI/Data Warehouse

Data Architect BI Engineer Big Data Developer Data Warehouse Engineer BI Specialist

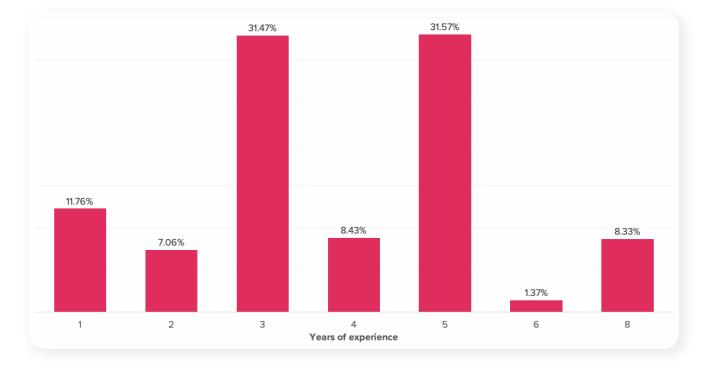
ML Data Engineer

Data Engineer Big Data Engineer Al/ML Engineer Model Automation Engineer

DEMAND FOR DATA ENGINEERING


DATA ENGINEER SALARIES IN CANADA

Average in Canada


\$83,662 per year

TECHNICAL SKILLS

REQUIRED YEARS OF EXPERIENCE

ABOUT THE PROGRAM

OVERVIEW

WeCloudData's Data Engineering certificate program focuses on helping students to acquire the essential data engineering skills, gain professional experience and prepare for data engineer careers.

WeCloudData is a Toronto-based data skill training academy. We've partnered with many Canadian corporations on upskilling their employees. No. 1 best data science bootcamp in 2020-2021 by SwitchUp.

WHO IS IT FOR?

This weekend program is suitable for students who want to become a Machine Learning Engineer or Al Engineer

Students accepted into the program should have acquired fundamental knowledge and skills of Python programming and machine learning already

Recent Grads

from CS and Engineering who want to gain advantage in the job market by gaining practical ML engineering skills

Data Scientists

who want to build more advanced skills in MLOps and model deployment

Entrepreneurs

who want to build ML systems and platforms for her/his next startup

Career Switchers

who have a full-time job and would like to switch career

PROGRAM DETAILS

24 WEEKS Wednesday evening & Saturday full day

10+ GUEST SPEAKERS

to make connection with

2 END-TO-END PROJECTS to build your portfolio

TA OFFICE HOUR Mon-Thu 6PM-8PM

4 : 1 RATIO students vs instructors

1 BUSINESS PROJECT from a real client

(full-time students only)

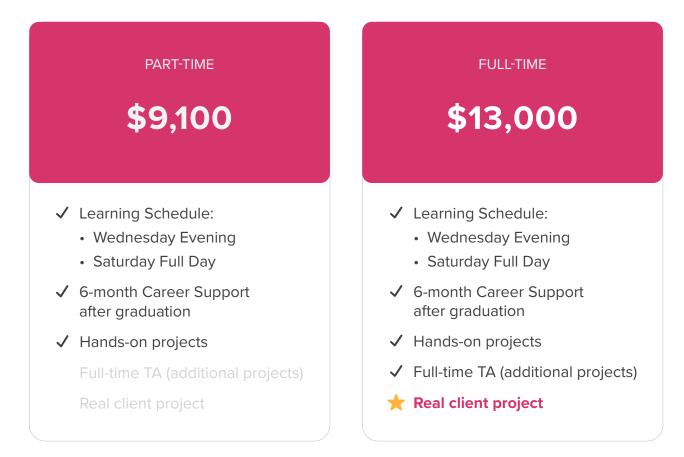
LEARNING OUTCOMES

- Solid understanding of major big data and cloud platforms such as Hadoop, Spark, Databricks and AWS
- Able to build and deploy data pipelines on cloud platforms using workflow orchestration tools such as Apache Airflow and DBT
- Comfortable with building real-time and batch data
 ingestion
- Deep understanding of the pros and cons of different database systems
- Hands-on experience with data warehouse modeling and ETL
- Hands-on experience with DataOps tools such as Git, Docker, Kubernetes
- Familiar with all things data engineering for data scientists: maintaining pipelines, building feature stores, scheduling model training, monitoring, and deployment
- Solid understanding of data governance and managing data engineering projects

PREREQUISITES

- Know the basics of Python and SQL (We will also provide online Python and SQL courses for you)
- An operating system with at least 8G of RAM (16G is preferred), 4 cores of CPU

GUEST SPEAKERS



TOP-NOTCH CURRICULUM

The only academy that provides the most comprehensive data engineering curriculum

Topics	Content	Topics	Content
Programming	Linux SQL Python/Scala	Data Pipelines	Apache Airflow CI/CD Basics
Cloud Computing	Amazon Web Service	Docker Kubernetes	Containerization Container Orchestration
Big Data	Hadoop, MapReduce, Hive Apache Spark NoSQL Database Presto/Druid	Data Governance	Data Quality Data Cataloguing Metadata Management Data Privacy
Data Warehouse	Snowflake, Redshift, BigQuery Data Modelling Database Sharding, Replication	Al for Data Engineers	Machine Learning Processes Building Feature Stores Model Deployment
ETL/ETL	Data Ingestion Data Integration Streaming Data Processing	Data Project Management	Project Management Time Management Communications

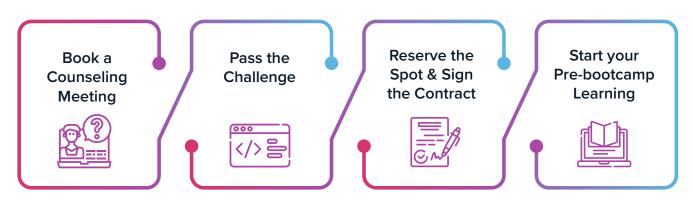
FLEXIBLE SCHEDULE

CUSTOMIZED LEARNING PLATFORM

Self-paced learning guided and powered by our unique learning management system

where you can watch lectures, work on your codes, test your progress with live quizzes, track your learning journey, and communicate with instructors and TA's.

WEEK 1 Linux	week 2 Docker
 Linux System basic Linux System Configuration Linux Text Editors Linux Commands Linux Shell Scripting Git Work on A Mini Project 	 Docker Container Docker Compose Docker Image Creation Docker in CICD Work on A Mini Project
weeк з Data Warehouse I	week 4 Data Warehouse II
 Advanced SQL Data Modeling Snowflake 	 ETL design ETL SQL Scripting ETL Shell Scripting Work on A Mini Project
WEEK 5 Python in Cloud Projects I	WEEK 6 Python in Cloud Projects II
 Useful Python Packages The Best Practice in Python projects Project Setup on Cloud (AWS) AWS EC2 AWS S3 AWS IAM 	• AWS Lambda • A Cloud Python project
week 7 Big Data I	WEEK 8 Big Data II
 Big Data Theory Presto and Hadoop Review Apache Spark Theory Spark Programing I 	 Spark Programing II Best Practice in Spark Projects Work on A Mini Project
WEEK 9 Big Data III	WEEK 10 Data Pipeline: Apache Airflow
 AWS EMR Spark in EMR CICD in Spark EMR projects Databricks Spark Cluster Optimization 	 Airflow Setup Airflow DAGs Operators and Hooks Airflow Operation Work on A Mini Project
WEEK 11 Data Lake I	
 Data Lake Catalog AWS Glue Analysis on Data Lake AWS Athena 	


- Apache Superset

CURRICULUM Semester 11 12 weeks

WEEK 12/13	WEEK 14/15
Mid-Term Project Preparation	Mid-Term Project
 Advanced Spark Project Advanced Data Pipeline Setup EC2, S3, Lambda, EMR, Glue, Athena Apache Airflow and Superset Docker and Airbytes 	• Mid-term Project
WEEK 16	WEEK 17
No-SQL Database: DynamoDB	No-SQL Database: Elasticsearch
 DynamoDB Theory and Setup DynamoDB Syntax Best Practice in Real Project Work on A Mini Project 	 Elasticsearch Theory and Setup ELK Query Best Practice in Real Project Work on A Mini Project
WEEK 18	WEEK 19
Data Lake II: Data Ingestion — Nifi	Data Lake II: Data Ingestion — Kafka
 Nifi Theory and Setup NIfi Operators Best Practice in Real Project Work on A Mini Project 	 Kafka Theory and Setup Kafka Structures: Topics, Producer, Consumer Data Ingestion with Kafka Work on A Mini Project
week 20	WEEK 21
Data Lake II: Lakehouse — Apache Hudi	Data Steaming: Spark Streaming
 The Theory of Lakehouse The Architecture of Apache Hudi Hudi Lakehouse on S3 Hudi Best Practice Work on A Mini Project 	 Data Streaming Theory Spark Streaming Programing NIFI in Streaming
WEEK 22	WEEK 23/24
Data Steaming: Streaming Project	Capstone Project
 Spark Streaming Project Setup Streaming best practice 	• Capstone Project

CURRICULUM Semester 2 | 12 weeks

ADMISSION PROCESS

Our program advisor will have a 1-on-1 meeting with you to see if the program is a good fit for you. There is no application fee. It takes about 30 minutes There will be a technical test and an interview. Applicants spend up to 2 hours on the challenge. Our admission officer will work with you directly to help you fill out a contract, pay \$500 deposit and assist you to apply any kind of grant and finance options.

Starting ahead will gain you more experience and competence. Research shows that preview and preparation account for 73.7% success in academic achievement of university students.

TUITION, GRANTS AND FINANCE OPTIONS

\$9,100 PART-TIME

\$13,000 FULL-TIME

As an Ontario registered private career college, you can apply for student line of credit from BMO with lower interest rate.

DO YOU KNOW?

With Ontario Second Career grant you may be eligible for up to \$28,000 for costs including: tuition, books, manuals, transportation, basic living allowance, child care.

Contact our program advisor, Amir, for more information amir.asadian@weclouddata.com