Student Success
Bootcamp Programs
Short Courses
Portfolio Courses
Bootcamp Programs

Launch your career in Data and AI through our bootcamp programs

  • Industry-leading curriculum
  • Real portfolio/industry projects
  • Career support program
  • Both Full-time & Part-time options.
Data Science Bootcamp

Become a data engineer by learning how to build end-to-end data pipelines


Become a data analyst through building hands-on data/business use cases

Become an AI/ML engineer by getting specialized in deep learning, computer vision, NLP, and MLOps

Become a DevOps Engineer by learning AWS, Docker, Kubernetes, IaaS, IaC (Terraform), and CI/CD

Short Courses

Improve your data & AI skills through self-paced and instructor-led courses

  • Industry-leading curriculum
  • Portfolio projects
  • Part-time flexible schedule
Portfolio Courses

Learn to build impressive data/AI portfolio projects that get you hired

  • Portfolio project workshops
  • Work on real industry data & AI project
  • Job readiness assessment
  • Career support & job referrals

Build data strategies and solve ML challenges for real clients

Help real clients build BI dashboard and tell data stories

Build end to end data pipelines in the cloud for real clients


Choose to learn at your comfort home or at one of our campuses

Corporate Partners

We’ve partnered with many companies on corporate upskilling, branding events, talent acquisition, as well as consulting services.

AI/Data Transformations with our customized and proven curriculum

Do you need expert help on data strategies and project implementations? 

Hire Data, AI, and Engineering talents from WeCloudData

Student Success

Meet our amazing alumni working in the Data industry

Read our students’ stories on how WeCloudData have transformed their career


Check out our events and blog posts to learn and connect with like-minded professionals working in the industry

Read blogs and updates from our community and alumni

Explore different Data Science career paths and how to get started

Our free courses and workshops gives you the skills and knowledge needed to transform your career in tech



Consulting Case Study: Lookalike Models for Audience Expansion

October 19, 2021


Our client is one of the largest news publishers in North America. With their print and digital formats reach millions of readers every week, they lead the national discussion by engaging audiences through its prestigious coverage of news, politics, business, investing and lifestyle topics, across multiple platforms.

The WeCloudData team worked with the client’s digital marketing and data analytics team on an audience segmentation and expansion project for customer acquisition.

Problem Statement

WeCloudData helped the client set ML strategies on how to generate look-alike users for the certain types of customers with similar behaviours or interests, further, to provide guidance on the marketing and bidding decisions with the most up-to-date and precise information.

The key challenge of the project is that the client collects hundreds of millions of session data generated by millions of readers on a daily basis. To drive subscriptions, the client is hoping to target anonymous users who will become high-LTV subscribers. The preliminary data cleaning and analysis must be done. Hence, we started our work on the following aspects:

  1. Preliminary data transforming and analysis
  2. Look-alike model development
  3. Model evaluations and testing
  4. Workflow automation

Tools used: Snowflake, Spark on Databricks, AWS (S3, EC2, Airflow), Machine Learning


  1. Similarity-based Look-alike Model: Nearest Neighbors (NN) + Clustering
    1. Simple and easy to understand
    2. Difficult to test (A/B testing required)
    3. No feature importance to interpret
    4. Not with high precise but effective to detect “Neighbors (Targeted customers from the pool) Strangers (Unwanted customers for this segment)” with the defined Similarity Score

To solve the scalability problem, we also introduced the hashing algorithms, Locality Sensitive Hashing (LSH) to reduce the computational cost when calculating the distance.

Precision vs Recall: i.e., “cost of targeting the wrong user is much smaller than the cost of failing to target the right user”. Also don’t want to waste resources on the wrong users though – Finding a balance is important.

  1. Classification Models
    1. More explanatory power – Feature importance and confusion matrix
    2. Randomly sampling users is difficult and introduced bias – Training models in Spark will improve reliability significantly
    3. Easier to evaluate results on test data
  2. Model Deployment and Data Flow
  1. The model automation:
    1. Audience segment creation in Cloud
    2. A batch job runs daily or hourly to find lookalikes to augment the segment size (real-time list generation possible)
    3. User selects number of lookalikes based on similarity score
    4. New users appended back to original segment and sent to 3 party Ad Manager

Future works

  • Availability to adjust the metrics in determine the “similarity score” based on business needs in the future
  • Test on different segments and larger samples as the data gathered
  • Continue engineering features for the model interpretation
  • Optimized the AI data pipeline


Beam Data successfully delivered this half year project within digital media industry. It showed our capability in handling large amount of data and provide the data-driven insights in new areas. Throughout the project, one of the biggest challenges is to gain the variety types of domain knowledges in a short time and communicate with cross-functional teams to convey the tasks. In addition, we also quickly adjusted in grasping the client’s tech stacks to deliver the compatible works smoothly.

Beam Data then successfully gained trust with the client and continued the relationship with the same project team for further work contents such as the AI model optimization, pipeline design and other different data inquiries.

Join our programs and advance your career in Business IntelligenceData EngineeringData Science

"*" indicates required fields

This field is for validation purposes and should be left unchanged.
Other blogs you might like
Learning Guide
Objectives This tutorial is one part of a containers series of tutorials that will walk the reader through installation…
by WeCloudData Faculty
October 11, 2022
Student Blog
The blog is posted by WeCloudData’s student Amany Abdelhalim. In this article, I am illustrating how to collect tweets…
by Student WeCloudData
June 23, 2020
WeCloud Faculty
This blog post was written by BeamData’s Project Manager and WeCloudData’s Assistant Instructor, Shan Gao. My Philosophy of Teaching…
by Shan Gao
September 29, 2021

Kick start your career transformation